Search results for "Lindelof space"
showing 4 items of 4 documents
A new class of spaces with all finite powers Lindelof
2013
We consider a new class of open covers and classes of spaces defined from them, called "iota spaces". We explore their relationship with epsilon-spaces (that is, spaces having all finite powers Lindelof) and countable network weight. An example of a hereditarily epsilon-space whose square is not hereditarily Lindelof is provided.
On closures of discrete sets
2018
The depth of a topological space $X$ ($g(X)$) is defined as the supremum of the cardinalities of closures of discrete subsets of $X$. Solving a problem of Mart\'inez-Ruiz, Ram\'irez-P\'aramo and Romero-Morales, we prove that the cardinal inequality $|X| \leq g(X)^{L(X) \cdot F(X)}$ holds for every Hausdorff space $X$, where $L(X)$ is the Lindel\"of number of $X$ and $F(X)$ is the supremum of the cardinalities of the free sequences in $X$.
P-spaces and the Whyburn property
2009
We investigate the Whyburn and weakly Whyburn property in the class of $P$-spaces, that is spaces where every countable intersection of open sets is open. We construct examples of non-weakly Whyburn $P$-spaces of size continuum, thus giving a negative answer under CH to a question of Pelant, Tkachenko, Tkachuk and Wilson. In addition, we show that the weak Kurepa Hypothesis (a set-theoretic assumption weaker than CH) implies the existence of a non-weakly Whyburn $P$-space of size $\aleph_2$. Finally, we consider the behavior of the above-mentioned properties under products; we show in particular that the product of a Lindel\"of weakly Whyburn P-space and a Lindel\"of Whyburn $P$-space is we…
On the cardinality of almost discretely Lindelof spaces
2016
A space is said to be almost discretely Lindelof if every discrete subset can be covered by a Lindelof subspace. Juhasz et al. (Weakly linearly Lindelof monotonically normal spaces are Lindelof, preprint, arXiv:1610.04506 ) asked whether every almost discretely Lindelof first-countable Hausdorff space has cardinality at most continuum. We prove that this is the case under $$2^{<{\mathfrak {c}}}={\mathfrak {c}}$$ (which is a consequence of Martin’s Axiom, for example) and for Urysohn spaces in ZFC, thus improving a result by Juhasz et al. (First-countable and almost discretely Lindelof $$T_3$$ spaces have cardinality at most continuum, preprint, arXiv:1612.06651 ). We conclude with a few rel…